WireIE Riding a Wave of Success – JSA TV Spotlight at PTC’18

, , , , ,

CEO Rob Barlow Shares Direction for 2018 with Jaymie Scotto Cutaia

At PTC’18, one of the most important telecommunications events for the Pacific Rim, our CEO, Rob Barlow, met up with JSA TV’s Jaymie Scotto Cutaia to discuss the company’s latest developments and where it is headed for the rest of 2018.

Overall, throughout 2017, WireIE experienced continuous growth providing leading-class high-speed network solutions in underserved markets in Canada and around the world. We bolstered our reputation as an expert in underserved connectivity by consistently exceeding our network performance and reliability objectives throughout the year.

For 2018, we are maintaining our focus on making it possible for individuals and enterprises in underserved areas to take full advantage of the digital economy. By using both fiber and microwave technologies in the delivery of high-availability networks, we are a partner of choice for industry and governments in need of reliable, secure connectivity for their mission-critical applications. WireIE prides itself on its ability to extend carrier networks to remote and hard to reach locations, bringing the metropolitan broadband experience to the underserved and promoting regional economic development.

To keep abreast of new developments, follow us on Twitter and LinkedIn!

Metcalfe’s Law and the Value of Rural Networks

, , , ,

In 1965 an observation was made by David House that over the history of computing hardware, the processing power of a minimal cost computer chip would double approximately every two years – Moore’s Law. While the impact of that forecast has been widely accepted and credited with significant advances in technology and associated economic benefits, there is an important forecast that applies to the power and value of networks, known as Metcalfe’s Law. The simplest way to apply this law is to look at the value of one fax machine which is useless on its own and as soon as you start to increase the number of fax machines, you increase the number of people who can send and receive faxes. While there is no specific timeline attached to Metcalfe’s law, advances in network size and capacity along with the mobile computing and communications revolution, have made the impact of Metcalfe’s law perhaps even more significant that its processing power counterpart.

We definitely “get more” out of the devices and networks that we use by virtue of their size and reach. Metcalfe’s law was defined by device only – today it also applies to the network effect most commonly discussed in reference to social networks. For example, if Facebook were a nation it would be larger than the United States and would rank itself just behind China and India in population.

I believe the most transformative aspect of the network effect or Metcalfe’s law is in an economic context. We are witnessing firsthand how the whole paradigm of enterprise computing is shifting to a cloud based model. This is allowing for even greater levels of distribution and provisioning of services and applications across both urban, rural and remote locations.

You can draw a direct line from the now dominant importance of SLAs in our business to the network effect described in Metcalfe’s Law. When the power and capacity of the connections becomes standard, only the reliability and performance of the network can impact its value to customers. In our opinion, the impact of the network effect and Metcalfe’s Law is significantly larger in rural and remote communities because of the fact that the multiplier effect is allowing business to take a substantial leap forward from the negative effects of decades of living off restricted and narrow network capacity.

Blogging with Barlow

, , ,

2013 marks some fairly significant anniversaries in evolution of communications networks.  It is the 50th anniversary of digital switching capability on phone networks, represented by the introduction of touch tone telephony that eliminated the need for the human component in switching.  This year is also the 40th anniversary of the Cell phone which has allowed networks to dramatically expand both reach and utility.  The history notes have received significant attention this year, but from my perspective it is the massive shift in data transmission ushered in by these and other innovations that has truly reshaped the network at the enterprise level.

Consider for a moment: in this same time period, the level of data flowing through to end users has grown exponentially and created a never-ending need for expansion of network capacity.   Vendors such as Cisco are reporting that 4G networks show an average 19 fold increase in the level of data traffic passing over 4G networks in 2012. Even though those networks only account for less than one percent of current network build out, they already account for 15 percent of the traffic.  The bottom line is that network capacity is having difficulty keeping pace with the evolution of network demand; those figures merely reflect mobile traffic, not accounting for enterprise data transmission required to effectively operate businesses with more than one location.  The sheer volume of machine to machine traffic (both fixed and mobile) will soon outnumber human driven traffic.

Through changes in efficiency standards, networks themselves are witnessing evolution even within the new standards themselves.  For example, improvements in spectral efficiency allow existing and newer networks to continually evolve the limits of capacity over time, better servicing their enterprise clients, and get a ‘bigger bang’ out of an existing network with minimal adaptation.  It amounts to a network effect that we can see repeating itself year after year.

The pace of growth is a testament to more than just sectors that were once considered “data oriented” or “high tech” but by facet of the global economy including public sector, finance, manufacturing, retail, telecommunications, transportation and yes, even energy and resources.  Only 5 years ago the Organization for Economic Co-operation and Development (OECD) projected that broadband would forever change the global economy because it “facilitates the development of new inventions, new and improved goods and services, new processes, new business models, and it increases competitiveness and flexibility in the economy.”  They noted that broadband is “one of only a few technological improvements that fundamentally changes how and where economic activity is organised.”  One need look no further than the economic evolution of India in the past decade to witness how a remote and underperforming economy of the past has become a global powerhouse for enterprise in the span of only a few short years in everything from software and application development to network enabled service, management and control.   The shift that got rolling 50 years ago on network communications has done far more than just change how enterprises communicate but equally how they work.

For enterprises in remote and rural communities in Canada the impact of this trend is both challenging and inspiring for very different reasons.  On one hand being accessible with great volume has never been more technically possible.  On the other hand the need to have that capacity widely available and quickly upgradeable is becoming a basic fundamental of almost any business operation with an ambition to compete effectively in their sector.

In short as the world becomes smaller it also becomes more competitive.  The impact of the network effect on economic development in rural and remote regions is obvious and makes the potential gains enormous and the price of failure all the more ominous.

The Shift to Microwave Broadband Is Coming Sooner than You Think

, , , , , , , ,

The tide is shifting on acceptance and adoption of microwave radio as a viable alternative or supplement to fibre and economics may dictate more of the same.

For many in the telecommunications industry the recognition of microwave as a viable alternative to fibre to create carrier grade bandwidth with industry leading latency is not old news.

It has been frustrating to witness that the marketplace has not recognized this fact in a substantial and meaningful way. That does appear to be changing.

Late last year, Jason Bunge of Dow Jones wrote about the pace and level of high speed microwave adoption that has taken place recently in the securities exchange markets in North America and Europe. His article highlights how the deployment of high speed broadband over microwave is about to outpace fibre network deployment this year. As Bunge notes this is an industry where milliseconds count and where the highest standards of speed and network reliability are considered essential.

What is driving the change is cost efficiency and timeliness as the exchange business needs to address declining trade volumes by increasing speed and efficiency in their markets without breaking the bank to do it.

Many consider the capital markets to be technology leaders in the Financial Services (FS) sector and highly influential concerning the use and adoption of technology and telecom innovation. If the leaders of the FS sector are ready to make the jump to microwave radio it bodes well for the broader adoption of this standard within that sector and beyond.

Consider for a moment that the economics is driving the shift away from fibre and it becomes clear that there are other sectors that could likewise realize the same benefits and make the switch. If not for primary connections to office locations, it will be used as secondary to locations that have fibre available. Industries like oil and gas extraction, mining, Manufacturing, retail and the public sector are all witness to both exponential growth in data and the opportunity to use data to quickly and effectively deliver innovative new products and services to an increasingly “high demand” business place. If it is also recognized as an alternative or supplement that is more cost effective than traditional fibre deployment, widespread adoption of microwave radio  is not far behind? It is not the innovation of technology that is the biggest driver of change but the “mother of necessity” economics that makes change all the more compelling.

– Rob Barlow, CEO

About WireIE: We deliver carrier-grade Transparent Ethernet Solutions backed by SLAs. With a custom blend of fiber and digital to suit your circumstances, we transform, extend and support your communications networks in rural and remote areas. +1.905.882.4660 | www.wireie.com |info@wireie.com

Smart Grid in Ontario – A Great Positive Step

, , , , , , ,

On June 8, 2012, the Government of Ontario took the next step in their Clean Energy Economic Development Strategy, with the release of the Clean Energy Institute (CEI). The new institute will bring together industry leaders and utility companies to build on Ontario’s strengths in smart grid technologies and other clean energy innovations.

In conjunction with the CEI, Mars hosted the Future Energy Summit focused on bringing some of the top minds in clean energy to give feedback and help design the Smart Grid we need. A smarter grid will spearhead better tools to manage electricity use, help utilities prevent, detect and restore outages and ultimately connect every home and building to a renewable energy grid, therefore, decreasing green house gas emissions.

WireIE contributes to the Smart Grid by partnering with the University of Ontario Institute of Technology (UOIT) to define the operational requirements of a communications network supporting Smart Grid. By modeling various rural and urban electricity distribution scenarios, communication network specifications have been developed. This collaboration continues as WireIE sponsors the study and modeling of new Smart Grid applications.

WireIE is now part of this new funding released today by the Energy Minister for a Durham region trial. This will advance our current research into a live production environment. As a Smart Grid future is enabled in Ontario WireIE will continue to lead with its partners.

For more information on Ontario’s Clean Energy Institute:
http://news.ontario.ca/mei/en/2012/06/ontario-creating-a-clean-energy-institute.html

For more information on Smart Grid projects:
http://news.ontario.ca/mei/en/2012/06/smart-grid-projects.html

For more information about Microwave Technologies for Carrier Ethernet Services, download this MEF document

About WireIE: We deliver carrier-grade Transparent Ethernet Solutions backed by SLAs. With a custom blend of fiber and digital to suit your circumstances, we transform, extend and support your communications networks in rural and remote areas. +1.905.882.4660 | www.wireie.com |info@wireie.com

Fiber and Wire Roadblocks: How Microwave can Help

, , , , ,

The typical forms of voice and data transport for Carrier Ethernet Services are fiber and copper. While both provide connectivity in access networks, fiber is favoured for its prolific capacity, and copper is most widely used in environments with an existing telephone network . However, there are times when physical, geographical, legal, political or financial obstacles will stand squarely in the way of digging ditches, raising poles and pulling wire.

Overcoming the Obstacles

This is where microwave steps in. Even in the most challenging of circumstances, the combination of digital radio and Carrier Ethernet services can offer excellent flexibility, reliability, bandwidth and quality of service at a realistic price:

  • Right-of-way: Because microwave uses radio spectrum, it can navigate physical barriers such as private property
  • Service-aware traffic management allows you to differentiate voice and data packets by type, to avoid bottlenecks and smooth demand.
  • Rural and third world: In these environments, often with poor legacy communications, microwave extends your connectivity reach
  • Planning issues: Digital radio leapfrogs complex planning approvals that can slow the progress of fiber or copper installations in densely populated urban areas
  • Temporary links: Digital radio is a great choice for temporary sporting or entertainment events
  • Physical hurdles: Water, roads and challenging terrain can all complicate, or defeat, terrestrial installations
  • Security concerns: The threat of human or environmental interference, especially the increasing theft of copper in some countries, makes traditional installations more risky and less advisable

Low Cost Gigabit Ethernet Services

Today’s digital radio technologies are capable of providing rapid connectivity and delivering Gigabit Ethernet services across any terrain, over significant distances. Recent technical developments also enable digital radio to function in lower frequency bands without line-of-sight. Plus, in many environments, this technology can provide the lowest cost per bit for Ethernet service transport.

Remote Site Connectivity

Here are just some of the ways you can use microwave technology to connect the remotest or most rural of locations:

  • Broadband networks to support the conversion to digital TV
  • Broadband networks to support DSL access in rural areas by overcoming the distance limitations of the DSLAM and broadband backbone
  • Fiber backup routes to provide redundancy, diversity and network protection
  • Network extensions to reach remote locations

So, whether you’re looking to extend service in areas where fiber and copper are not available, or need a high-performance back-up route to ensure failsafe communications, digital radio is a highly competitive choice with an impressive performance history.

For more information about Microwave Technologies for Carrier Ethernet Services, download this MEF document

About WireIE: We deliver carrier-grade Transparent Ethernet Solutions backed by SLAs. With a custom blend of fiber and digital to suit your circumstances, we transform, extend and support your communications networks in rural and remote areas. +1.905.882.4660 | www.wireie.com |info@wireie.com

Microwave and Carrier Ethernet: Separating Fact from Fiction

, , , , , ,

If you want to cause a stir, walk into a room full of seasoned technicians and mention microwave. Citing the twin fears of limited capacity and weather-dependent performance, many will offer stories of past problems without realizing that, like many other things in life, microwave has moved on.

The Future is not the Past

The legacy-based, analog solutions of the past bear no resemblance to modern microwave. Dismiss the new developments, and you could find yourself missing out on the many business benefits that today’s digital radio technologies bring.

Increasingly, organizations are discovering the advantages of a converged network platform that combines Carrier Ethernet and point-to-point digital radio to provide a new, highly effective method of voice and data transport. With the benefit of alternative thinking, smart solutions providers are overcoming terrestrial challenges and building advanced communications networks in some surprisingly remote areas – where often dial up had been the only option.

Two Strong Technologies

In response to our appetite for higher bandwidth and budget-conscious performance, over the past decade Carrier Ethernet has moved to centre stage – and continues to evolve today. Checking all the boxes, it’s a quicker, simpler and cheaper way to connect people with information. Plus, with Ethernet, it’s easy to build extensions or make adjustments down the road. And terrestrial microwave has proven to be an excellent partner for fiber in access networks – playing an increasingly valuable role in support of rich media applications like video, VoIP and disaster recovery.

The Question of Capacity

It’s time to dispel some of the myths and reveal the facts about microwave:

  • Gigabit capacity is already a reality – and it’s enough for most Carrier Ethernet applications.
  • Service-aware traffic management allows you to differentiate voice and data packets by type, to avoid bottlenecks and smooth demand.
  • Adaptive code modulation technology increases bandwidth capacity and also means you can deploy microwave equipment in densely populated areas.
  • Nodal function optimizes radio bandwidth resources and makes it easier for you to scale.
  • Packet technology is flexible, which means you can use microwave to get an optimal increase in data rates.
  • Over-air capacity is increased with microwave by using multiple transmission channels at different carrier frequencies. Capacity has also grown through enhancements like cross polarization, interference cancellation and data compression.

The Latest Weather Report

Although weather can affect microwave, technology enhancements have made it easier to deal with bad conditions, and custom-engineered links are specifically designed to account for the elements:

  • Adaptive modulation protects your network from weather effects by varying radio throughput, making adjustments according to the performance of air interface channels.
  • Frequency diversity makes your network resilient to bad-weather fading.

A New Form of Transport

The evolution of microwave technology offers a valuable opportunity to combine Carrier Ethernet services with digital radio to provide end-to-end network transport services. Offering limitless reach, this converged platform will give you the performance and capacity to communicate faster and more flexibly at a price that suits your CFO – even when geography is not on your side.

Optimizing Economies of Scale in DTV Transmission Systems

, ,

The global digitization of over-the-air broadcast television presents an unprecedented opportunity for networks to realize capital and operational cost efficiencies at the transmitter site. In this report, just released by WireIE, we explore a DVB-T multimarket solution where STL/backhaul costs are greatly reduced in comparison to equivalent analogue systems. The report also looks at the significant cost savings that can be realized by having multiple program providers share a single DTV Transport Stream (TS).

Just click here for the report and be sure to visit the WireIE Resource Centre for this and other materials on next generation networks.

Cloud Computing & The Network Operator

, , ,

With the broad adoption of personal computing, we have witnessed more than a quarter of a century of staggering incremental improvement in data processing power. These benefits have not only touched the traditional desktop. Smaller form factors such as laptops, netbooks, and now tablets and smart phones, are reaping the benefits of ever increasing clock speeds complimented by multiple core processors. In parallel, memory has become faster and cheaper.

A case in point is Apple’s iPad. Launched a year ago, the original iPad had a 1 GHz single core processor. A mere year later, Apple last week announced iPad 2 which boasts a dual core processor along with a nine fold increase in graphics processing capability. All of this at the same price yet in a form factor 1/3 thinner than its still novel predecessor. And a year later, Apple no longer owns the entire tablet market. Familiar names such as HPLGMotorolaRIMand Samsung are offering tablets with impressive specifications — all supported by powerful dual core processors.

The increase in processing speed, memory capacity and other performance related specifications align with Intel co-founder Gordon E. Moore’s law which essentially asserts that processing and memory performance improves exponentially per unit cost over the course of roughly one year. In addition, while battery technology is comparatively slow in its evolution, we’ve seen enormous improvements in power efficiency in microprocessors and RAM – allowing for device portability. Deloitte predicts that smart phones and tablets will outsell all other computer categories combined in 2011. Device portability is now an expectation of the consumer, and increasingly the enterprise as well.

With all this horsepower in the hands of the user, why is cloud computing so compelling? While the three previous installments in this series touched on cloud computing benefits such as real time collaboration, ubiquitous access to applications and user files on any device, perhaps the most compelling attraction is the exceptionally low cost of entry. Cloud computing user devices need be nothing more than a hardware platform functioning as an ultra thin client. Equally attractive, cloud computing is client platform agnostic – both from a hardware and operating system perspective.

For example, a user at head office on the east coast creates a spreadsheet in the cloud using her office notebook running Windows. Later on at lunch, she reviews the spreadsheet on her Xoom tablet and makes a few changes before discussing it with her colleague out on the west coast. Later on and now from home, that same user accesses the spreadsheet on her brand new MacBook Pro running OS/10. As she makes some final changes, her colleague from the west coast has the spreadsheet loaded on his office desktop running Windows. Through real time collaboration he adds the remaining numbers — the spreadsheet now ready for review by the CEO. The CEO is on an ecotour in Central America but is able to stop in a small village where there’s an Internet cafe. On an old PC running Windows 98 and with dial-up Internet access, the CEO pulls up the spreadsheet, reviews it, adds some comments and returns to his adventure.

Combining portability with a more ‘traditional’ user interface such as a low cost netbook is a very good platform for cloud based office productivity applications such as spreadsheet and document preparation. Even presentations are simple to prepare using cloud based applications.

Impact on the Network Operator

As the chart below depicts, cloud computing transfers virtually all of the burden away from the consumer and into the hands of the host (most often a webco), along with the network operator/carrier.

Cost Distribution of Cloud Computing

Clearly the end user enjoys very low fixed and variable costs. With service delivery via the Internet, virtually any device with a standards compliant browser can be used. In addition, cloud oriented ‘apps’ for smart phones and tablets continue to emerge – almost on a daily basis.

The aggregate cost burden for cloud computing service delivery (both capital and operational) is largely absorbed by the host webco and/or the network operator. With that in mind, cost mitigation and monetization strategies are being investigated by webcos and network operators alike.

Cloud Computing Cost Distribution

For network operators, an opportunity to repatriate some lost revenue from over-the-top users is one possibility. Many cloud computing webcos see benefit in dispersing their hardware assets beyond their own data centres. In the trend towards network edge oriented service delivery, installing an instance of the webco’s cloud services in a network operator’s facilities is becoming a compelling idea. This approach increases redundancy and geographic diversity for the webco, but it also disperses the global cost burden.

In turn, the network operator benefits from revenue sharing, or some other revenue generating mechanism. Co-branding, along with other enhanced marketing opportunities also become possible under such collaboration.

As the industry has learned in the past decade however, it is essential the user experience of the cloud service not be compromised in attempts to build walled gardens, or through attempts to offer reverse over-the-top services in competition with the webco itself. Users are sophisticated and know they have a choice. Importantly, users typically associate cloud computing value with the webco as opposed to the network operator. The enormous success of smart phone ‘apps’ stores offered by Apple, Google, RIM and others demonstrate that network operators are in fact cognizant of where their value is and equally important, where it isn’t. With that in mind, a great opportunity for network operator/webco collaboration awaits.

As a wholesale network operator in Canada, WireIE is capable of hosting Cloud services as a complement to our Transparent Ethernet Solutions.

Cloud Computing Defined

, , ,

“The concept of outsourcing hardware, software and file storage to service providers on the Internet” is how Forrester Research defines Cloud Computing.

Many have pointed out the philosophical similarities between Cloud Computing and the days prior to broad adoption of the personal computer.

  • Application hosting, data processing and storage were centralized on mainframe computer platforms.
  • The user community accessed these resources through a standards-based (albeit proprietary) communications network infrastructure.
  • The computing power of the user terminal was limited relative to the mainframe (admittedly, a huge understatement).

That’s pretty much where the similarities end. We now live in a world with near ubiquitous access to the Internet using it’s suite of standardized protocols under TCP/IP (Transmission Control Protocol/Internet Protocol). Over and above the communications advantages, the Internet itself is now home to an infinite array of resources. Equally significant is the parallel evolution (arguably revolution) of end user devices. Unlike the monochromatic glow of yesterday’s text based dumb terminal, today’s world offers an incomparable variety of feature-rich, graphically based end user devices supported by numerous operating systems – all with their own attributes. Add to that the wireless revolution with its mobilization of the Internet and one would be hard pressed to draw further parallels.

Cloud computing is compelling for a number of good reasons:

  • Hardware, application software (including updates) and system security are administered by the host.
  • Many cloud computing environments support rich multiparty collaboration.
  • Barriers to entry are comparatively low and affordable.
  • User device agnostic: supports any device equipped with a standards compliant browser.
  • CPU power of end user equipment is very low.
  • Very little RAM is required in end user equipment.
  • Virtually no local storage requirements beyond operation system and web browser. User file storage is hosted in the cloud as opposed to on a local disk drive or file server.
  • Power hungry and comparatively slow hard disk drives are being replaced with fast, solid state storage in Cloud Computing user devices. Instant booting, and much longer battery life are two of the most apparent benefits.
  • Portabilty, Mobility, Ubiquity: Cloud resources are available anywhere there is internet access.
  • Generally very low network bandwidth required by the end user.

Dedicated Cloud Platforms

One of the more intriguing Cloud Computing developments has been the emergence of Google’sChrome O/S. Chrome O/S devices will have all the hardware attributes listed above, but in the spirit of a complete Cloud Computing experience, Chrome O/S is, as the name implies, is an Operating System hard coded into the hardware. Alone, a Chrome O/S product is of limited utility. Add a connection to the Internet – even a relatively slow one – and the user instantly has access to all those applications, not to mention the web via the integrated Chrome browser.

Initial reviews of Chrome O/S have been mixed. Regardless, no one can argue that from a conceptual perspective, Chrome O/S is a very compelling solution for many user categories, students for example. Chrome O/S takes the netbook/sub-notebook category to a new level. The video below from Epipheo Studios succinctly describes the thinking behind the development of Chrome O/S.

Rumours abound that Google will merge Chrome O/S’ functionality into its very popular and broadly available Android mobile operating system. Time will tell… In the meantime, Microsoft has leveraged their strong position in feature-rich desktop applications. By integrating Office 2010 desktop with Microsoft’s cloud environment known as Office Web Apps, users can enjoy document sharing and collaboration, regardless of location, even when a connection to the Internet is temporarily out of reach. Once reconnected to the Internet, sophisticated synchronization automatically reconciles any updated content.